Compressed-Sensed-Domain L1-PCA Video Surveillance

نویسندگان

  • Ying Liu
  • Dimitris A. Pados
چکیده

We consider the problem of foreground and background extraction from compressed-sensed (CS) surveillance video. We propose, for the first time in the literature, a principal component analysis (PCA) approach that computes the low-rank subspace of the background scene directly in the CS domain. Rather than computing the conventional L2-norm-based principal components, which are simply the dominant left singular vectors of the CS measurement matrix, we compute the principal components under an L1-norm maximization criterion. The background scene is then obtained by projecting the CS measurement vector onto the L1 principal components followed by total-variation (TV) minimization image recovery. The proposed L1-norm procedure directly carries out low-rank background representation without reconstructing the video sequence and, at the same time, exhibits significant robustness against outliers in CS measurements compared to L2-norm PCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Video Abstraction in H.264/AVC Compressed Domain

Video abstraction allows searching, browsing and evaluating videos only by accessing the useful contents. Most of the studies are using pixel domain, which requires the decoding process and needs more time and process consuming than compressed domain video abstraction. In this paper, we present a new video abstraction method in H.264/AVC compressed domain, AVAIF. The method is based on the norm...

متن کامل

Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard

Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...

متن کامل

Real Time Moving Object Detection and Tracking in H264 Compressed Domain for Video Surveillance

A real-time moving object detection and tracking algorithm on H.264 compressed video streams for IP video surveillance systems. The goal is to develop algorithms which may be useful in a real-life industrial perspective by facilitating the processing of large numbers of video streams on a single server and to reduce the computational complexity and memory requirements by extraction information ...

متن کامل

Object tracking in surveillance videos using compressed domain features from scalable bit-streams

Recent developments in the video coding technology brought new possibilities of utilising inherently embedded features of the encoded bit-stream in applications such as video adaptation and analysis. Due to the proliferation of surveillance videos there is a strong demand for highly efficient and reliable algorithms for object tracking. This paper presents a new approach to efficient compressed...

متن کامل

Online (Recursive) Robust Principal Components Analysis

This work studies the problem of sequentially recovering a sparse vector St and a vector from a low-dimensional subspace Lt from knowledge of their sum Mt := Lt + St. If the primary goal is to recover the low-dimensional subspace in which the Lt’s lie, then the problem is one of online or recursive robust principal components analysis (PCA). An example of where such a problem might arise is in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Multimedia

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016